Some new perfect Steiner triple systems

نویسندگان

  • M. J. Grannell
  • T. S. Griggs
  • J. P. Murphy
چکیده

In a Steiner triple system STS(v)=(V,B), for each pair {a, b} ⊂ V , the cycle graph Ga,b can be defined as follows. The vertices of Ga,b are V \{a, b, c} where {a, b, c} ∈ B. {x, y} is an edge if either {a, x, y} or {b, x, y} ∈ B. The Steiner triple system is said to be perfect if the cycle graph of every pair is a single (v − 3)-cycle. Perfect STS(v) are known only for v = 7, 9, 25 and 33. We construct perfect STS(v) for v = 79, 139, 367, 811, 1531, 25771, 50923, 61339 and 69991.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Steiner triple ( quadruple ) systems of small ranks embedded into perfect ( extended perfect ) binary codes 1

It is shown that a class of Steiner triple systems of order 2−1, obtained by some special switchings from the Hamming Steiner triple system, is embedded into some perfect code, constructed by known switchings of ijk-components from the binary Hamming code. The number of Steiner triple systems of order n and rank less or equal n− log(n + 1) + 2, embedded into perfect binary codes of length n, is...

متن کامل

Perfect countably infinite Steiner triple systems

We use a free construction to prove the existence of perfect Steiner triple systems on a countably infinite point set. We use a specific countably infinite family of partial Steiner triple systems to start the construction, thus yielding 2א0 non-isomorphic perfect systems.

متن کامل

Almost all Steiner triple systems have perfect matchings

We show that for any n divisible by 3, almost all order-n Steiner triple systems have a perfect matching (also known as a parallel class or resolution class). In fact, we prove a general upper bound on the number of perfect matchings in a Steiner triple system and show that almost all Steiner triple systems essentially attain this maximum. We accomplish this via a general theorem comparing a un...

متن کامل

Embedding in a perfect code

For any 1-error-correcting binary code C of length m we will construct a 1-perfect binary code P (C) of length n = 2 − 1 such that fixing the last n − m coordinates by zeroes in P (C) gives C. In particular, any complete or partial Steiner triple system (or any other system that forms a 1-code) can always be embedded in a 1-perfect code of some length (compare with [13]). Since the weight-3 wor...

متن کامل

On 6-sparse Steiner triple systems

We give the first known examples of 6-sparse Steiner triple systems by constructing 29 such systems in the residue class 7 modulo 12, with orders ranging from 139 to 4447. We then present a recursive construction which establishes the existence of 6-sparse systems for an infinite set of orders. Observations are also made concerning existing construction methods for perfect Steiner triple system...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009